Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 69, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046649

RESUMO

BACKGROUND: Acetolactate synthase (ALS)-inhibiting herbicides from the chemical families of sulfonylureas and imidazolinones are used worldwide. However, drift or sprayer contamination from some sulfonylurea herbicides causes a high level of male sterility in cruciferous species, especially oilseed rape (OSR). In this paper, we evaluated the gametocidal effects of 27 ALS-inhibiting herbicides that were sprayed on OSR plants at the bolting stage. RESULTS: OSR anther development was very sensitive to sublethal exposure to most ALS-inhibiting herbicides. The application of 18 out of the 20 tested sulfonylureas (except ethametsulfuron and ethoxysulfuron), two imidazolinones (imazethapyr and imazamox), and one sulfonylamino-carbonyltriazolinone (flucarbazone-sodium) at suitable rates could induce male sterility. Eight of the herbicides, including chlorsulfuron (at application rates of 60-120 mg/ha), halosulfuron-methyl (300-600 mg/ha), sulfosulfuron (400-600 mg/ha), triflusulfuron-methyl (500-750 mg/ha), pyrazosulfuron-ethyl (150-225 mg/ha), nicosulfuron (200-300 mg/ha), imazethapyr (750-1125 mg/ha), and imazamox (400-800 mg/ha), could induce over 90% male sterility and over 60% relative outcrossed seed set in six cultivars with different origins. These eight chemicals could be used as new gametocides for hybrid seed production. This study also examined the possibility of external application of these gametocides on several unstable Polima cytoplasmic male sterile and thermosensitive genic male sterile lines. Although the outcrossed seed set of the treated lines was slightly reduced, the gametocide application significantly increased the seed purity of the resulting hybrid. CONCLUSION: The finding of the gametocidal effects of most sulfonylureas and imidazolinones are of great importance for developing new functions for ALS-inhibiting herbicides. The application of gametocides will also greatly promote the safe utilization of environment-sensitive male sterility in hybrid seed production. Unexpectedly, the application of three triazolopyrimidines (florasulam, flumetsulam, and penoxsulam) and one pyrimidinylthiobenzoate (bispyribac-sodium) did not cause male sterility, although these herbicides obviously inhibited the activity of ALS and plant growth. This result suggests that inhibition of ALS activity does not always lead to male sterility in plants, and these gametocides may also inhibit other biological functions vital for microspore development.


Assuntos
Brassica napus/efeitos dos fármacos , Herbicidas/administração & dosagem , Imidazóis/administração & dosagem , Sementes/efeitos dos fármacos , Compostos de Sulfonilureia/administração & dosagem , Brassica napus/genética , Brassica napus/fisiologia , Cruzamentos Genéticos , Hibridização Genética , Reprodução , Sementes/genética , Sementes/fisiologia
2.
BMC Plant Biol ; 19(1): 124, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940071

RESUMO

BACKGROUND: Acetolactate synthase (ALS)-inhibiting herbicide tribenuron-methyl (TBM) is an efficient gametocide that can cause rapeseed (Brassica napus L.) to become male sterile and outcrossing. To find the reason the TBM treatment leads to male sterility, an integrated study using cytological, physiological, and transcriptomic methods was conducted. RESULTS: Some temporary symptoms, including the discoloration of young leaves and a short halt of raceme elongation, were observed in the rapeseed plants exposed to TBM at an application rate of 1 µg per plant. Both chloroplasts in young leaves and plastids in anthers were deformed. TBM also reduced the leaf photosynthetic rate and the contents of chlorophyll, soluble sugar and pyruvate. Both the tapetal cells and uni-nucleate microspores in the treated plants showed large autophagic vacuoles, and the tissue degenerated quickly. A transcriptomic comparison with the control identified 200 upregulated and 163 downregulated differential expression genes in the small flower buds of the TBM treatment. The genes encoding functionally important proteins, including glucan endo-1,3-beta-glucosidase A6, QUARTET3 (QRT3), ARABIDOPSIS ANTHER 7 (ATA7), non-specific lipid-transfer protein LTP11 and LTP12, histone-lysine N-methyltransferase ATXR6, spermidine coumaroyl-CoA acyltransferase (SCT), and photosystem II reaction centre protein psbB, were downregulated by TBM exposure. Some important genes encoding autophagy-related protein ATG8a and metabolic detoxification related proteins, including DTX1, DTX6, DTX35, cytosolic sulfotransferase SOT12, and six members of glutathione S-transferase, were upregulated. In addition, several genes related to hormone stimulus, such as 1-aminocyclopropane-1-carboxylate synthase 8 (ACS8), ethylene-responsive factor ERF1A, ERF1, ERF71, CRF6, and RAP2-3, were also upregulated. The transcriptional regulation is in accordance with the functional abnormalities of pollen wall formation, lipid metabolism, chloroplast structure, ethylene generation, cell cycle, and tissue autophagy. CONCLUSION: The results suggested that except for ALS, the metabolic pathways related to lipid metabolism, pollen exine formation, photosynthesis and hormone response are associated with male sterility induced by TBM. The results provide new insight into the molecular mechanisms of inducing male sterility by sulfonylurea.


Assuntos
Acetolactato Sintase/antagonistas & inibidores , Sulfonatos de Arila/farmacologia , Brassica napus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Herbicidas/farmacologia , Infertilidade das Plantas/efeitos dos fármacos , Acetolactato Sintase/metabolismo , Brassica napus/enzimologia , Brassica napus/fisiologia , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...